Chuong 3
Hé¢ thong may tinh

7 | A |

. A Top-level view of computer components

CPU Main memory
0
System . 1
bus . 2
PC MAR .
Instruction .
Instruction '
IR MBR Instruction
/O AR Clickfto '
Data
Execution
Data
Data
/O Module . _
. PC Program counter
Buffers IR Instruction register
MAR Memory address register
MER Memory buffer register
/O AR Input/output address register
/O BR Input/output buffer register
2

= o=
-t

. I8 Computer function

» Basic function performed by a computer is
execution of a program (i.e. a set of instructions)

» Instruction processing: read (fetch) instructions
from memory and execute each instruction

» Basic instruction cycle:

Fetch cycle Execute cycle
¥ N Fetch next Execute
START ™ instructi instructi HALT

. A Computer function (cont.)

» 4 categories of instructions:
= Processor-memory: Data may be transferred from processor to memory or
from memory to processor.
= Processor-1/O: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/0 module.

= Data processing: The processor may perform some arithmetic or logic
operation on data.

= Control: An instruction may specify that the sequence of execution be
altered.

-

Example of program execution

0 34 15
Opcode Address

{a) Instruction format

=

15

Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

A Example of program execution (cont.)

Memory CPU registers Memory CPU registers
300[1 9 4 0 30 0|pc |300[1 9 40 3 0 1]PC
30[59411 AC| 3015 9 4 1 000 3|AC
32|12 9 4 1 1 9 4 0|/IR |302|2 9 4 1 9 4 0f]IR
940|0 0 0 3 940|0 0 0 3

9410 0 0 2 94110 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
30001 9 4 0 30 1|PC 300(1 9 4 0 3 0 2|PC
30[594110003.&(:30[5941 000 5]AC
32|12 9 4 1 59 4 1|IR |302({2 9 4 (5941112
940 [0 0 0 3 9400 0 0 3 3+2=5
9410 0 0 2 94110 0 0 2

Step 3 Step 4

Memory CPU registers Memory CPU registers
300[1 9 4 0 3 0 2|PC 30001 9 40 30 3|PC
30115 9 4 1 000 S5/AC[301]5 9 41 000 5|AC
32|12 9 4 1 =2 9 4 1|IR [302|2 9 4 | 294 1|IR
9400 0 0 3 9400 0 0 3

94110 0 0 2 941({0 0O 0 5

Step 5 Step 6

Example of program execution (cont.)

» Execution cycle for a particular instruction may
involve more than one reference to memory

» Steps of processing instruction ADD B, A (i.e. stores
the sum of the contents of memory locations B and
A

into memory location A):

= Fetch the ADD instruction.

= Read the contents of memory location A into the processor.
= Read the contents of memory location B into the processor.
= Add the two values.

= Write the result from the processor to memory location A.

Instruction cycle state diagram

Instruction complete, Return for string
fetch next instruction or vector data

. [Instruction cycle state diagram (cont.)

» Instruction address calculation (iac): Determine the address of the next
instruction to be executed. Usually, this involves adding a fixed number
to the address of the previous instruction.

Instruction fetch (if): Read instruction from its memory location into the

~

~

Instruction operation decoding (iod): Analyze instruction to determine
type of operation to be performed and operand(s) to be used.

processor.
Operand address calculation (oac): If the operation involves reference
to and operand in memory or available via I/0O, then determine the
address of the operand.

~

~

Operand fetch (of): Fetch the operand from memory or read it in from
/0.

Data operation (do): Perform the operation indicated in the instruction.

v

Operand store (os): Write the result into memory or out to 1/0.

v

Eterru pts

mechanism by which other modules (I/O, memory) may
terrupt the normal processing of the processor

asses of interrupts:

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero. attempt to
execute an illegal machine instruction, or reference outside a user’s
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of
error conditions.

S

Hardware Failure Generated by a failure such as power failure or memory parity error.

10

Interrupt action

» Interrupts can occur without warning.

» When an interrupt occurs, the program counter and status
flags are saved in a special location.

» New program counter and status flags are loaded. The
location may be determined by the type of interrupt.

» A interrupt is similar to a function call, the return address is
pushed on the stack and execution jumps to another
location.

11

-

Program Flow Control

Prostum y Program | Progrim Program | Program Pro

© / bl /:/J i '/ﬂ ﬁ;

1 { 1o 1 { foe? WO 1 /L.

“EIL'E "‘-.__ 'f Cuﬂﬂﬂ_md “EIEE ‘.--ﬂ“‘ff Cﬂrﬁﬁm “EIL.E .__,.---lrlr Commiznd
P © if / f,-"'
Corsies |® /f i

¥ W a1/
o i e ;; / s
S 1w e
WRITE ® | wre 2. ﬂ;}‘)
1 | END T 5.? ¥ oD
G ;-;;
©) 4 © ;.*’;
® 7/
1 ¥ . 1 !:;
WRITE WRITE WRITE ¥

() No interrupts () Interrupts; short IO wiit {w) Interrupts; long 1O wait
x = intermpt cveurs during course of execution of user program

12

Figure 3.7 Program Flow of Control Without and With Interrupts

Instruction cycle with interrupts

Fetch cycle Execute cycle Interrupt cycle
-
Interrupts
disabled
START ;
13

Instruction cycle state diagram with
interrupts

=4 o

Multiple

Return for string No
or vector data interrupt

Instruction complete,
fetch next instruction

14

. 4 Multiple interrupts

» Two approaches for handling multiple interrupts:
= Disabled interrupt: ignore other interrupts request signals while an interrupt
is being processed
= Define priorities for interrupts and allow an interrupt with higher priority to
cause a lower-priority handler to be itself interrupted

’l
U

Bus interconnection

» Communication pathway connecting the various
components of a computer

» Types of transfers:

= Memory to processor: The processor reads an instruction or a unit of
data from memory.

= Processor to memory: The processor writes a unit of data to
memory.

= |/O to processor: The processor reads data from an I/O device via an
/O module.

= Processor to |/O: The processor sends data to the I/O device.

= |/O to or from memory: For these two cases, an /O module is
allowed to exchange data directly with memory, without going
through the processor, using direct memory access (DMA).

16

% Bus structure

» Data lines (data bus)

» Address lines (address bus)

» Control lines

‘ CPU I ‘Memurrl-“ Memnryl ‘ /O l-“‘ 1/0 l
Control lines

Address lines

| | | || |
Data lines

L) L] L] || }
Bus

17

-

Bus structure (cont.)

» Typical control lines:

Memory write: causes data on the bus to be written into the addressed
location

Memory read: causes data from the addressed location to be placed on the
bus

I/O write: causes data on the bus to be output to the addressed I/O port
I/O read: causes data from the addressed I/O port to be placed on the bus

Transfer ACK: indicates that data have been accepted from or placed on the
bus

Bus request: indicates that a module needs to gain control of the bus

Bus grant: indicates that a requesting module has been granted control of
the bus

Interrupt request: indicates that an interrupt is pending

Interrupt ACK: acknowledges that the pending interrupt has been recognized
Clock: is used to synchronize operations

Reset: initializes all modules

18

Type
Dedicated

Multiplexed

Method of Arbitration
Centralized
Distributed

Timing
Synchronous
Asynchronous

Bus Widih
Address
Data

Data Transfer Type
Read
Write
Read-modify-write
Read-after-write
Block

19

I8 Bus arbitration methods

» The bus arbitration protocol determines which device gets
to use the bus at any given time.

» Bus arbitration can be centralized or distributed

» In a centralized scheme, a single hardware device, referred
to as a bus controller or arbiter, is responsible for allocating

time on the bus

» In a distributed scheme, there is no central controller; each
module contains access control logic and the modules act
together to share the bus.

20

-

Bus types

» Dedicated bus:

= There are separate wires for data and addresses

= A store operation can put both the address and the data on the bus
at the same time

= High throughput, less contention
= |ncreased size and cost

» Multiplexed bus:

= The same lines are used at different times to hold either data or
addresses

= Multiplexed buses require fewer lines.
= More complex circuitry is needed
= Potential reduction in performance

