
Chapter 7
Processor Structure and
Function

1

+
Contents

› 14.1 Processor Organization

› 14.2 Register Organization

› 14.3 Instruction Cycle

› 14.4 Instruction Pipelining

+
14.1- Processor Organization

› Fetch instruction (from memory (register, cache, main memory)

› Interpret instruction (what action is required)

› Fetch data (data from memory or an I/O module)

› Process data (performing some operations on data)

› Write data (writing result to memory or an I/O module)

➔ In order to do these things the processor needs to store some data
temporarily and therefore needs a small internal memory

Processor Requirements:

CPU With the System Bus and
CPU Internal Structure

14.2- Register Organization

› Enable the machine or
assembly language
programmer to minimize
main memory references
by optimizing use of
registers

› Used by the control unit
to control the operation of
the processor and by
privileged operating
system programs to
control the execution of
programs

USER-VISIBLE REGISTERS
CONTROL AND STATUS
REGISTERS

◼ Within the processor there is a set of registers that function as a level of
memory above main memory and cache in the hierarchy

◼ The registers in the processor perform two roles:

Referenced by
means of the

machine
language that
the processor

executes

• General purpose

• Can be assigned to a variety of functions by the programmer

• Data

• May be used only to hold data and cannot be employed in the
calculation of an operand address

• Address

• May be somewhat general purpose or may be devoted to a
particular addressing mode

• Examples: segment pointers, index registers, stack pointer

• Condition codes

• Also referred to as flags

• Bits set by the processor hardware as the result of operations

Categories:User-Visible Registers

Table 14.1: Condition Codes

+
Control and Status Registers

› Program counter (PC)
– Contains the address of an instruction to be fetched

› Instruction register (IR)
– Contains the instruction most recently fetched

› Memory address register (MAR)
– Contains the address of a location in memory

› Memory buffer register (MBR)
– Contains a word of data to be written to memory or the word most recently

read

Four registers are essential to instruction execution:

Program Status Word (PSW)

Register or set of registers
that contain status
information

Common fields or flags
include:

• Sign

• Zero

• Carry

• Equal

• Overflow

• Interrupt Enable/Disable

• Supervisor

Status information
are used to give a

decision for branching

Example
Microprocessor

Register
Organizations

Includes the
following

stages:

Fetch

Read the next instruction
from memory into the

processor

Execute

Interpret the opcode and
perform the indicated

operation

Interrupt

If interrupts are enabled
and an interrupt has

occurred, save the current
process state and service

the interrupt

14.3-
Instruction

Cycle

Instruction Cycle Loop due to
additional memory

accesses

Instruction Cycle State Diagram

Fetch cycle Indirect cycle Interrupt cycle

Data Flow, Fetch Cycle

Fetch cycle for the next instruction
(Instruction index is in PC)

MAR: Memory Address Register
MBR: Memory buffer Register

The CU examines the contents of the IR to
determine if it contains an operand specified
by indirect addressing→ Use indirect
cycle(data address is in MBR)

Data Flow, Interrupt Cycle

(1) Store PC (return point after executing interrupt routine)
(2) Store current state (values in registers before running interrupt

routine)
(3) Fetch cycle is used to load interrupt routine

Similar to the
use of an

assembly line in
a manufacturing

plant

New inputs are
accepted at one end

before previously
accepted inputs

appear as outputs at
the other end

To apply this concept to
instruction execution we
must recognize that an

instruction has a number
of stages

14.4- Instruction Pipeling
Pipelining Strategy

A way to improve
performance is performing

jobs in parallel manner

An assembly line (dây
chuyền xử lý) in which
some operations are

performed
concurrently

Two-Stage Instruction Pipeline

Additional Stages

› Fetch instruction (FI)

– Read the next expected
instruction into a buffer

› Decode instruction (DI)

– Determine the opcode and the
operand specifiers

› Calculate operands (CO)

– Calculate the effective address
of each source operand

– This may involve displacement,
register indirect, indirect, or
other forms of address
calculation

› Fetch operands (FO)

– Fetch each operand from
memory

– Operands in registers need
not be fetched

› Execute instruction (EI)

– Perform the indicated
operation and store the
result, if any, in the specified
destination operand location

› Write operand (WO)

– Store the result in memory

Timing Diagram for Instruction Pipeline
Operation

I: Instruction
O: operand
F: Fetch
C: Calculate
F: Fetch
E: Execute
W: Write

The Effect of a Conditional Branch on Instruction
Pipeline Operation

Suppose that
the instruction
3 is a branch to
the instruction
15

At the time 7, the
instruction 3 executes
and the instruction 15

is loaded.

These jobs are
wasted

SIX STAGE
INSTRUCTION
PIPELINE

Figure 14.12 indicates the
logic needed for pipelining to
account for branches and
interrupts

ALTERNATIVE
PIPELINE

DEPICTION

I3 is a
conditional

branch to I15

SPEEDUP
FACTORS
WITH
INSTRUCTIO
N
PIPELINING

number of
instructions that are
executed without a
branch

The larger the
number of pipeline
stages, the greater
the potential for
speedup ➔ higher
COST

Pipeline Hazards (rủi ro)

Occur when the pipeline, or
some portion of the

pipeline, must stall (trì hoãn)
because conditions do not

permit continued execution

Also referred
to as a

pipeline
bubble

There are three types of
hazards:

•Resource

•Data

•Control

RESOURCE
HAZARDS

A resource hazard occurs
when two or more
instructions that are already
in the pipeline need the
same resource

The result is that the
instructions must be
executed in serial rather than
parallel for a portion of the
pipeline

A resource hazard is
sometimes referred to as a
structural hazard

FO is accessing memory. So, this step is idle

DATA HAZARDS
A data hazard occurs when there is a conflict in the
access of an operand location

RAW

Hazard

Instruction is executing and the register EAX
is writing to. So, it can not be read.

X86
instruction

Types of Data Hazard

› Read after write (RAW), or true dependency
– An instruction modifies a register or memory location

– Succeeding instruction reads data in memory or register location

– Hazard occurs if the read takes place before write operation is complete

› Write after read (WAR), or antidependency
– An instruction reads a register or memory location

– Succeeding instruction writes to the location

– Hazard occurs if the write operation completes before the read operation takes place

› Write after write (WAW), or output dependency
– Two instructions both write to the same location

– Hazard occurs if the write operations take place in the reverse order of the intended
sequence

Control Hazard

› Also known as a branch hazard

› Occurs when the pipeline makes the wrong decision on a
branch prediction

› Brings instructions into the pipeline that must
subsequently be discarded

› Dealing with Branches:
– Multiple streams

– Prefetch branch target

– Loop buffer

– Branch prediction

– Delayed branch

A simple pipeline suffers a penalty for a
branch instruction because it must choose
one of two instructions to fetch next and
may make the wrong choice

A brute-force approach is to replicate the
initial portions of the pipeline and allow the
pipeline to fetch both instructions, making
use of two streams

Drawbacks:

• With multiple pipelines there are contention delays for
access to the registers and to memory

• Additional branch instructions may enter the pipeline before
the original branch decision is resolved

Multiple Streams

brute-force search or exhaustive
search (vét cạn)

PREFETCH BRANCH TARGET

◼When a conditional branch is recognized,
the target of the branch is prefetched, in
addition to the instruction following the
branch

◼Target is then saved until the branch
instruction is executed

◼If the branch is taken, the target has
already been prefetched

◼IBM 360/91 uses this approach

Loop Buffer

› Benefits:
– Instructions fetched in sequence will be

available without the usual memory access
time

– If a branch occurs to a target just a few
locations ahead of the address of the branch
instruction, the target will already be in the
buffer

– This strategy is particularly well suited to
dealing with loops

Small, very-high speed memory maintained
by the instruction fetch stage of the pipeline
and containing the n most recently fetched
instructions, in sequence

Similar in principle to a cache
dedicated to instructions.

Differences:
•The loop buffer only
retains instructions in
sequence
•Is much smaller in size
and hence lower in cost

Branch Prediction
› Various techniques can be used to predict whether a

branch will be taken:

1. Predict never taken

2. Predict always taken

3. Predict by opcode

1. Taken/not taken switch

2. Branch history table

◼ These approaches are static

◼ They do not depend on the execution
history up to the time of the conditional
branch instruction

◼ These approaches are dynamic

◼ They depend on the execution history

➔ States of some last instructions
(some bits) must be stores in cache

How are predictions carried out?

Next slide

BRANCH
PREDICTION
FLOW CHART

If only one bit is stored, a loop
may cause 2 errors in prediction:

once on entering and once on
exiting.

If 2 bits are stored, a prediction
algorithm is carried out using 2

branches (fig. 14.18)

Branch Prediction State Diagram
The decision process can be
represented more
compactly by a finite-state
machine

Finite-state machine is a way to
express a processing mechanism
in which each part of input will
determine a step of the process.

Some bits are stored: 0: Not taken, 1: Taken. A history can be as 01110

DEALING
WITH

BRANCHES

Each prefetch triggers a
lookup in the table.
No match: Fetch next
sequential address.
Match: a prediction is
made based on the state
of the instruction: Either
the next sequential
address or the branch
target address is fed to the
select logic.

branch history table

Delayed Branch

› It is possible to improve pipeline performance by
automatically rearranging instructions within a
program, so that branch instructions occur later
than actually desired. This intriguing approach is
examined in Chapter 15.

Intel 80486 Pipelining

› Fetch

– Objective is to fill the prefetch buffers with new data as soon as the old data have been
consumed by the instruction decoder

– Operates independently of the other stages to keep the prefetch buffers full

› Decode stage 1

– All opcode and addressing-mode information is decoded in the D1 stage

– 3 bytes of instruction are passed to the D1 stage from the prefetch buffers

– D1 decoder can then direct the D2 stage to capture the rest of the instruction

› Decode stage 2

– Expands each opcode into control signals for the ALU

– Also controls the computation of the more complex addressing modes

› Execute

– Stage includes ALU operations, cache access, and register update

› Write back

– Updates registers and status flags modified during the preceding execute stage

80486
INSTRUCTIO

N
PIPELINE

EXAMPLES

